
Imporving Security For The Data Stored In Decentralized Cloud
Environment Using Cloud Computing

B.NEELIMA #1, D.YASWANTH SAI #2, G.SAI BHARATH #3, K.SURENDRA REDDY #4,

N.SREEKANTH #5, P.MAHESH BABU #6
1 Asst. Professor, Department of Computer Science and engineering

2 B.Tech., Scholars, Department of Information & Technology
QIS Institute of Technology

Abstract- Decentralized Cloud Storage is a good chance for a new cloud market, which meets an
enormous community of users' supply and demand of IT resources. The dynamic and
autonomous character of the resultant infrastructure presents safety issues which might slow to
achieve this potential, otherwise making the projected economic advantages plainly visible and
attractive. This article provides a method which will allow the owners of resources to safeguard
their resources effectively and safely while depending on decentralized cloud services. Our
approach combines everything-or-nothing-transform to provide robust resource protection with
carefully planned techniques for resource cutting and decentralized storage network allocation.
We handle both availability and security assurances, evaluate them simultaneously in our
approach and allow resource owners to govern their environment.
Keywords—Distributed cloud storage. Secure destruction, splitting and distribution. Privacy.

I. INTRODUCTION

Many consumers and companies of storage/computing services from other parties have rented
a clear latest trend in information technology. The previous independently managed cloud
technology currently shows the participation of servers in an unknown place, wherever an
Internet connection is present. The servers are often reached directly. The usage of various
Internet services nowadays generally needs the presence of a service management Cloud Service
Provider (CSP). The current condition is explained by several variables. Overall, IT resource
procurement and management have considerable economies and major CSPs may offer services
at costs lower than smaller competitors. Nevertheless, many users have an excess of computing,
storage and network capacity in their own systems and would be willing to give such resources
in exchange for rent. The traditional market behavior will lead to an important opportunity to
create economic value from otherwise underutilized resources by using the infrastructure to
support the satisfaction of supply and demand for IT services.

The rising focus on Decentralized Cloud Storage (DCS) services, typified by the availability
of many nodes that may be utilized to store resources deeply decentralized, is witnesses to this
transformation of terrain. Individual resources are split in sections given to various nodes (with
replication to ensure availability). A resource access needs all of its shards to be retrieved. The
fundamental attribute of the DSC is its co-operative and dynamic structure made up of
independent nodes which can join the service and provide storage space, usually for a fee. This
development was supported by Block chain-based technology, which offers an effective low-
freeze electronic payment system that supports the payment of the service. Users can rent out
their spare storage and bandwidth to offer a service to others in the Network, paying for that
service with a networking cryptocurrency [6] on platforms like as: Storj[1], SAFE Network
Vault[2], [3], IPFS[4] and Sia[5]. However, if safety concerns and the perception of (or actual)
loss of control were a problem for centralized clouds and slow down, they are even more so for
decentralized cloud storage, where a dynamic, independent network can indicate that owners

Fabrik Softwarehttp://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 05 Issue: 11, November 2023

 DOI:10.5072/FK26H4PV9J.2023.05.11.00548

have a further reduction in control over where and how their resources are managed. In fact, the
CSP is usually considered honest but inquisitive for centralised cloud systems and is thus relying
on all the operations requested by authorized users (for example, remove a file on the owner's
request) [7]. The CSP has been deterred from acting maliciously since this obviously affects its
reputation. In contrast, decentralised system nodes might be behaved badly if misconduct can
bring economic rewards without affecting reputation (e.g., the sale of erased file contents).
Customer-side encryption generally assumed in DCSs offers a first important protective layer
but, especially over the long term, it leaves resources open to attacks. For example, resources are
still susceptible if an encryption key is available, or if rogue nodes do not delete the shares on
request of the owner to try to rebuild the whole resource. Therefore, in DCS situations, the
protection of the encryption key is not sufficient because the aforesaid dangers exist. More than
one layer of defence is a common security idea. In this article, we suggest a further and
orthogonal protective layer that might minimise these hazards. On the plus side, we highlight,
however, that the decentralised structure of DCS systems also enhances the service's
dependability, as participation by independent parties minimises the danger of the accessibility
of the stored resources being limited by a single failure. The example of a mix with two
encryption rounds is shown in figure 1. Contiguous mini blocks are mixed in the first round,
while in the second round mini blocks are mixed to provide a mix of the entire resource content
(as can be seen from the pattern coding).

Fig. 1. An example of application of Mix & Slice

II. RELATEDWORKS

A major contribution to building dependable systems has been the RAID[12]. Normally on
local discs RAID is installed. The advent of the cloud expanded RAID to take account of
adversarial failures. In addition, HAIL [13] expanded RAID to include multiple cloud storage
providers and a Proof of Release (PoR) [14] system in order to ensure that a provider still retains
some information. However, HAIL is not appropriate for DCS systems with fewer nodes than
well-established cloud providers. Furthermore, HAIL does not take into consideration the
potential that adverse users try to reconstruct their own resources to benefit themselves. The
solutions targeted at providing dependability and data security in DCS are the closest to
ourselves. A certain level of safety assurances currently exist in several newly proposed DCS
networks. (i.e., protection against all the resource slices collected by malevolent actors).

Storj[1] and Sia[5] are among them engineers of customer-side encryption and do not
safeguard outsourced data from harmful coalescences. Instead, SAFE Network [2] uses a
mechanism for self-encryption: a weak AONT shield is split in shares before it is uploaded. The

Fabrik Softwarehttp://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 05 Issue: 11, November 2023

 DOI:10.5072/FK26H4PV9J.2023.05.11.00549

SAFE network's architecture and potential vectors of attacks are explored in [3]. There is a pre-
determined solution in [2], [3] that does not investigate the relationship between redundeness and
safety. The flexibility and security of these networks might be improved by applying our idea.
The security of outsourced data can be enhanced utilising AONT as an additional line (e.g. [16],
[17], [18]). However, existing methods take into account domains other than DCS. We addressed
the aim of supporting policy developments in external resources when access control policy is
mapped into a cryptographic policy beforehand in [9]. We discussed this idea. AONT-RS[19] is
another way to use codes for AONT and Reed- Solomon.

 In addition to the usage of AONT, the structure of our proposal shows a limited
resemblance. In reality, the work in [19] does not take the structure of contemporary DCS
systems directly into consideration and provides no strategy for identifying the parameters for
the system setup. The AONT-RS development process was developed by CAONT-RS [23],
which was utilised by CDStore [22] to reduce band-width and storage, and to increase resilience
against lateral channel assaults, whereas DepSky [21] utilises the Shamir system to satisfy
privacy needs. All of these suggestions address cloud-of-cloud setups that include cloud
providers' services. Their adjustment to the DCS scenario takes considerable care and the model
to identify the parameters to be used in the system setup. In addition, the relationship between
safety and accessibility is not explored.

P2P systems are a predecessor to DCS. Tangler is the closely connected P2P system, which
takes account of dependability and safety[23]. Tangler's aim is to defy censorship, which is not
its major objective, but the possible use of DCS. In the implementation of DCS systems, some of
the assumptions underlying the design of Tangler were also taken into account. One of Tangler's
significant differences with our idea is the adoption of Shamir's technique, making stowage and
bandwidth quite costly. Furthermore, it does not seek to combine data allocation availability and
secrecy. The originality of our approach with regard to these approaches is to combine AONT
with various slicing and resource allocation algorithms in DCS systems, along taking into mind
security and assurances of availability. All existing systems increase their safety and availability
qualities with our research of the characterization, interaction and settings of slicing and
assignment guidance parameters.

III. PROPOSED SYSTEM

Fig. 2 illustrates our reference scenario. This study focuses on the design and allocation
of the generated slices for the various nodes in the DCS system. Note that the term slitting in the
article refers to the cutting of a resource and the term slices referring to the outcome of such a
method. A slice therefore represents a piece of the resource, as opposed to a shard which
represents a fraction of the resource assigned to a node (a shard can include several slices). Our
focus on cutting and assignment is agnostic with regard to the exact AONT technique to be
utilised, so long as the strong safeguards aimed at are guaranteed and respected.

Fabrik Softwarehttp://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 05 Issue: 11, November 2023

 DOI:10.5072/FK26H4PV9J.2023.05.11.00550

Fig 2. Reference scenario

IV. RESULTS AND DISCUSSION
We have used it in an existing DCS network to validate the benefit of our idea. We have

already picked Storj as the most sophisticated and supported DCS from the existing DCS
networks (e.g. Storj[1], Sia[5], IPFS[4], and Maidsafe Safe-networks[10]). The market value for
these DCS (Storj for Storj, Siacoin for Sia, IPFS Filecoin, MaidSafecoin for Maidsafe)[11]
confirms the importance of these solutions: the worldwide market capitalization for these efforts
at the present time is more than $400 million. Currently, the Storj Network has more than
100,000 nodes, with over 100PB of data available with a 10-times-gain objective for 2019. Storj
is a protocol to manage the development and enforcement of storage agreements between peers
over a decentralised network. Each co-worker may negotiate contracts, upload and download
data from other co-operators, and verify regularly the availability and completeness of their data.
Storj uses a DHT to link interested parties to the establishment of the storage agreement. In the
debate, we use the language of our concept and refer to parties that use their resources as owners
for the decentralised network (in Storj). Instead, we refer to parties which give store space for a
payment in a digital device as storage nodes (farmers in Storj). Bridge nodes facilitate the right
system operations and might be responsible for verifying the integrity and resource availability.
We explain the technical decisions, findings and some concerns regarding the consequences of
fine granularity recovery, which characterise our system. The following is a description. The
implementation of Min slices and Min nodes in Storj needed to modify the open source client
library. Storj now offers three key clients: one C written from source, one JavaScript written and
intended to work with a.js node and one Python written, compliant with any Python
environment. In Python, we have also incorporated our technology for simple integration with
the implementation of Mix & Slice which covers additional protective needs as well as AONT
encryption (e.g., encryption-based access control and policy revocation). Storj's architecture
separates the customer from the bridge and storage nodes. Our cooperation with the Python
customer enables us to access the entire network of services.

We have implemented customer assignment techniques for min-slices and min- nodes
and assigned slices (all slices assigned to shards in Storj's nomenclature) to nodes. The
performance of shark shaping and resource rebuilding is larger in scale than the Storj network
storage node performance (Mix&Slice runs at multiple hundred MB/s, whereas Storj's highest
performance is around two orders lower).

We focussed our tests on assessing the time necessary to fulfil the access request as there
is no substantial influence on the time requested by decryption. We note that using AONT
requires that the customer can decrypt only when the full resources are available on the customer
when each access request is requested. If this is an issue for the specific application domain (e.g.

Fabrik Softwarehttp://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 05 Issue: 11, November 2023

 DOI:10.5072/FK26H4PV9J.2023.05.11.00551

very huge resources) it may be done by dividing up the large resource and using our method to
the resulting (smaller) chunks. Each chunk may then be automatically downloaded and
decrypted. This would lower the access time to the resources, but might also delay the
completion by reducing the efficient bandwidth due to the overhead for handling of a larger
number of access requests. The trials confirmed this result, which shows that the management of
huge resources has a performance benefit. We have added to the client a module that switches
parallel threads to (in the designated configuration, 10 concurrent threads) open requests for
access to the store nodes to assess the performance of the min slices and minnodes allocation
methods; In Storj, the proprietor's access requests include storage nodes and bridge nodes.
Actually, every time an owner requires a shard, she requests a bridge which returns a token
together with the IP address of the node, which stores the necessary shard (note that this access
request is recorded and a cryptocurrency payment is created by the owner for the node). The
client then uses the token as a parameter of an HTTP node request. The performance of the
system in the conversation between owner and node was examined in our experimentation. In
specifically, we examined, depending on the resource size, the access times recorded for both
allocation techniques.

A significant constraint on Storj's present design is that shard queries are nuclear and
only a certain amount of a shard controlled by a node cannot be accessed. This limitation cannot
be eliminated solely by the customer, as this has a significant influence not just on storage nodes,
but on the whole system structure. The Min slices and Min nodes methods have been applied
accordingly. We have applied for the Min nodes concurrently. Once a node ends its shard
delivery, a new request for another shard will be begun. Once the client has received full shards,
the request is deemed to be complete. For Min slices, a number of t parallel threads (t = r) are
activated for each shard to handle an application for separate nodes to manage the same shard,
for a number of shards that are compatible with the number of concurrent threads (for ex. in
experiments t + 2 and 5 Shards were being processed by 10 Threads at the same time). For Min
slice, a number is activated for each shard. The group of t threads is devoted to another missing
shard when a shard is entirely supplied to a customer.

Figure 4 shows the outcomes of our studies with resources of 1MB to 1GB in size used.
The time needed to complete the access requests is shown in Figure 4(a) and Figure 4(b)
indicates bandwidth throughput. There are three curves: one for the allocation of min slices, k =
26 and r = four and one for the assignment of min nodes with k = 12 and r = 5, respectively
corresponding to the configurations shown in Figure 3(a) and Figure 3(b). The charts show the
average and standard deviations of 10 executions from the values obtained. We observe that in
comparison to the Min slices method the Min nodes strategy has moderate benefits. The
advantage is derived from the overhead reductions associated with many nodes interaction. The
inherent diversity of nodes' performance, with some being quicker than others, also adds to
throughput. The approach of Min-Nodes works well, as long as the number of restricted
performance nodes (slow nodes) is lower than r-1, and the performance of the shards is at least k-
+1. For Min slices, it is enough to have one of the k+1 shards allocated to a number of nodes in
which the contacted t nodes are sluggish to be affected by a major access delay. The method of
Min Nodes works as long as the number of limited nodes (slow nodes) is lower than r - 1 and at
least k + 1 node (quick node) serves as the sharp. For Min slices, it is enough to have one of the
k+1 shards allocated to a number of nodes in which the contacted t nodes are sluggish to be
affected by a major access delay.

Fabrik Softwarehttp://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 05 Issue: 11, November 2023

 DOI:10.5072/FK26H4PV9J.2023.05.11.00552

Fig. 3. Min slices and Min nodes (k; r)-allocations that guarantee Pu ≤ 10-7 and Pc ≤10-6 with
different values for pu and pc

Fig. 4. Completion time (a) and overall throughput (b) in the Min slices and Min nodes allocation
strategies

We saw that the existing Storj node implementation was limited by the atomic nature of the
request for a shard. A system for managing partial access requests might be developed to
enhance the handling of access requests substantially. This may be assumed to be a very easy
modification in the server code for a generic server in a file sharing protocol; for a system of
DCS this modification would require a change to the model that is used to pay access requests.
The bridge should not regard every request the owner receives as an access to the entire resource
(which also means payment for the entire resource), but the IP address and the authorization
token of a node that stores the shard should be returned to the owner. The owner and the node
should then start a communication in which the owner gives signed confirmations for resource
items. This confirms can then be sent to the bridge for payment. If the owner only pays a Node
for the part of the resource which is downloaded, this would lead to better performance and
stronger competition among nodes; the owner would prefer the best performing Nodes and serve
more traffic, which would receive the corresponding higher remuneration for their storage.
Particularly for this model would be the variable structure of the Min nodes assignment. If nodes
showed high access time variability, each slice could be recovered from any of the r-nodes which
stored it with the ability to adjust the data transferred from each node depending on the response

Fabrik Softwarehttp://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 05 Issue: 11, November 2023

 DOI:10.5072/FK26H4PV9J.2023.05.11.00553

time and if an r-node group were to consist of all slow nodes, the impact would be limited to
single or few slices which could be recovered.

V. FUTURE SCOPE AND CONCLUSION

We have provided a technique to ensure that decentralised cloud storage services effectively
safeguard resources. Our method allows resource owners to secure their resources and govern
decentralised assignments to various network nodes. We have examined several techniques for
the division and distribution of resources, assessing their availability and safety assurances. We
have also developed issue modelling that allows owners to manage slice gritty and allocation
diversification to achieve targeted safety assurances and availability. Our approach enables
effective control for resource holders to remove the natural reluctance caused by safety problems
and advances the implementation of new services that benefit effectively from technological
development. Our approach offers opportunity for enhancements like error correction codes and
techniques for information dispersion to decrease the spatial overhead.

REFERENCES

[1] S. Wilkinson, T. Boshevski, J. Brandoff, J. Prestwich, G. Hall, P. Gerbes, P. Hutchins, C.
Pollard, and V. Buterin, “Storj: a peer-to-peer cloud storage network (v2.0),”
https://storj.io/storjv2.pdf, Storj Labs Inc., Tech. Rep., 2016.

[2] D. Irvine, “Maidsafe distributed file system,” MaidSafe, Tech. Rep., 2010.
[3] G. Paul, F. Hutchison, and J. Irvine, “Security of the maidsafe vault network,” in Wireless World

Research Forum Meeting 32, Marrakesh, Morocco, May 2014.
[4] J. Benet, “IPFS-content addressed, versioned, P2P file system,” Protocol Labs, Tech. Rep., 2014.
[5] D. Vorick and L. Champine, “Sia: Simple decentralized storage,” https: //sia.tech/sia.pdf,

Nebulous Inc., Tech. Rep., 2014.
[6] C. Patterson, “Distributed content delivery and cloud storage,” https:

//www.smithandcrown.com/distributed-content-delivery-cloud-storage/, Smith and Crown,
Tech. Rep., 2017.

[7] H. Hacig¨um¨us¸, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL over encrypted data in the
database-service-provider model,” in Proc. of ACM SIGMOD, Madison, Wisconsin, June 2002.

[8] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp. 612–613,
September/December 1979.

[9] E. Bacis, S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, M. Rosa, and P. Samarati,
“Mix&Slice: Efficient access revocation in the cloud,” in Proc. of ACM CCS, Vienna, Austria,
October 2016.

[10] N. Lambert and B. Bollen, “The SAFE network - a new, decentralised internet,”
http://docs.maidsafe.net/Whitepapers/pdf/TheSafeNetwork.pdf, MaidSafe, Tech. Rep., 2014.

[11] M. Conti, E. S. Kumar, C. Lal, and S. Ruj, “A survey on security and privacy issues of bitcoin,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3416–3452, 2018.

[12] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays of inexpensive disks
(RAID),” ACM SIGMOD Records, vol. 17, no. 3, pp. 109–116, Jun. 1988.

[13] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A high-availability and integrity layer for cloud
storage,” in Proc. of ACM CCS, Chicago, IL, USA, November 2009.

[14] “Proofs of retrievability: Theory and implementation,” in Proc. Of ACM CCSW, Chicago, IL,
USA, November 2009.

Fabrik Softwarehttp://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 05 Issue: 11, November 2023

 DOI:10.5072/FK26H4PV9J.2023.05.11.00554

[15] M. Albanese, S. Jajodia, R. Jhawar, and V. Piuri, “Dependable and resilient cloud computing,”
in Proc. of IEEE SOSE, Oxford, UK, March 2016.

[16] A. Aldribi, I. Traore, and G. Letourneau, “Cloud slicing a new architecture for cloud security
monitoring,” in Proc. of IEEE PACRIM, Victoria, Canada, August 2015.

[17] D. Nu˜nez, I. Agudo, and J. Lopez, “Delegated access for hadoop clusters in the cloud,” in Proc.
of IEEE CloudCom, Singapore, December 2014.

[18] M. Theoharidou, N. Papanikolaou, S. Pearson, and D. Gritzalis, “Privacy risk, security,
accountability in the cloud,” in Proc. of IEEECloudCom, Bristol, UK, December 2013.

[19] J. K. Resch and J. S. Plank, “AONT-RS: blending security and performance in dispersed
storage systems,” in Proc of FAST, San Jose, CA, USA, February 2011.

[20] M. Li, C. Qin, P. P. C. Lee, and J. Li, “Convergent dispersal: Toward storage-efficient security
in a cloud-of-clouds,” in Proc. of HotStorage, Philadelphia, PA, USA, June 2014.

[21] M. Li, C. Qin, and P. P. C. Lee, “CDStore: Toward reliable, secure, and cost-efficient cloud
storage via convergent dispersal,” in Proc. Of USENIX ATC, Santa Clara, CA, USA, July 2015.

[22] A. Bessani, M. Correia, B. Quaresma, F. Andr´e, and P. Sousa, “DepSky: Dependable and
secure storage in a cloud-of-clouds,” ACM TOS, vol. 9, no. 4, pp. 12:1–12:33, 2013.

[23] M. Waldman and D. Mazieres, “Tangler: a censorship-resistant publishing system based on
document entanglements,” in Proc. of ACM CCS, Philadelphia, PA, USA, November 2001.

Fabrik Softwarehttp://www.jartms.org E-ISSN: 2582-3078

BL Publications

Volume: 05 Issue: 11, November 2023

 DOI:10.5072/FK26H4PV9J.2023.05.11.00555

