
Journal of Advanced Research in Technology and Management Sciences
Volume: 01 Issue: 03 ISSN: 2582-3078 November 2019

Available online at: http://www.jartms.org

DST Sponsored Three Day National Conference on

"Sensor Networks, Internet of Things and Internet of Everything", 17 October 2019 to 19 October 2019
Organized by Department of EEE, Chadalawada Ramanamma Engineering College (Autonomous), A.P.

86

Survey of Real Time Task Scheduling Algorithms for Multicore

Processors
1Akhila.B, 2Lordwin Cecil Prabaker.M and 3Brahmaiah Naik.J

1 PG Scholar, Dept of ECE, Vignan’s Lara Institute of Technology and Science, Guntur
Akhilaboggavarapu456@gmail.com

2 Associate Professor, Dept of ECE, Vignan’s Lara Institute of Technology and Science, Guntur,

cecillord@gmail.com
3 Associate Professor, Dept of ECE, Vignan’s Lara Institute of Technology and Science, Guntur,

brahmaiahnaik@gmail.com

ABSTRACT
We consider a survey on scheduling of real time on multicore processors. In this survey, we observe that

the cores are distributed for the incoming task according to their workloads. Depends on the task

workload the cores may be splitted into big and small core. The big cores are having more Floating Point

and multiply accumulate(FPMAC) units also the small cores having less number of FPMAC units. We

can use the big core for complicated tasks and small one for easy tasks. Because of this dividing of cores

we can use cores efficiently and the output will be reliable one. The survey outlines fundamental results

about multicore processor real-time scheduling that hold independent of the scheduling algorithms

employed. The scheduling algorithm such as LTF scheduling, EDF scheduling, Priority scheduling are

used according to their algorithm.

Keywords: Multicore Processor, Realtime schedulling, Schedulling Algorithms.

1. INTRODUCTION

A Multicore processors is a computer processor integrated circuit with two or more separate

processing units, called cores, each of which reads and executes program instructions, as if the

computer had several processors. A scheduler is a software product that allows an enterprise to

schedule and track computer batch tasks. By using the schedulers we can execute the high priority

task and just hold on to low priority task.

Fig 1: Structure of multicore processor

Today, real-time embedded systems are found in many applications such as automotive

electronics, avionics, telecommunications, space systems, medical imaging, and consumer electronics.

By using real time the above areas has gained improvement in their fields. Companies building

embedded real-time systems are driven by a profit motive. To succeed, they aim to meet the needs and

ON CHIP COMPONENTS

Core1 Core2 Core3 Core4

Individual

Memory
Individual

Memory

Individual

Memory

Individual

Memory

Shared memory

Bus Interface

Journal of Advanced Research in Technology and Management Sciences
Volume: 01 Issue: 03 ISSN: 2582-3078 November 2019

Available online at: http://www.jartms.org

DST Sponsored Three Day National Conference on

"Sensor Networks, Internet of Things and Internet of Everything", 17 October 2019 to 19 October 2019
Organized by Department of EEE, Chadalawada Ramanamma Engineering College (Autonomous), A.P.

87

desires of their customers by providing systems that are more capable, more flexible, and more

effective than those of their competitors ,and by bringing these Systems to market earlier. This desire

for technological progress has resulted in a rapid increase in both software complexity and the

processing demands placed on the underlying hardware.

2. SYSTEM MODEL AND TASK MODEL

2.1 System Model for dynamic scheduling heterogeneous task:

The heterogeneous Multicore Architecture consists of following two modules:

• Module I: Consisting of simple small cores with low power. The cores are

homogeneous in nature. This module is dedicated for executing low power tasks and

the module is operational upto a certain low power level. 0 < 𝑃 <= 𝑝𝑖, where, P is

the power level and 𝑝𝑖is the maximum power level to operate the cores. The module I

consist of a number of small low power similar types of cores as described in the

work. In addition to this we have incorporated a run time dispatcher in the

architecture. The roles of the online dispatcher are as follows: To dispatch the

matching jobs into small cores. To migrate the rejected jobs from small cores into big

cores for execution. These simple small cores are designed for high parallel

performance with low power.

• Module II: Consisting of complex big cores with high power and is responsible for

executing high power tasks and the module is operational from a certain high power

level. 𝑝𝑖<P<=𝑝𝑚where 𝑝𝑚 is the maximum power level to operate the cores.
Total number of cores is C where,

C = 𝑐 𝑠 + 𝑐𝑏 (1)

(𝑐𝑠= total number of small cores; 𝑐𝑏 = total number of big cores).

Each small and big core has their own first level cache L1 and a second level L2 cache which

is shared by all core. The architecture of module II has been incorporated additionally where a few

big complex cores are placed for high serial performance. These cores are designed for highly

specialized application-specific task with high power. Each big core has their own local queue and

local cache (L1) to store the task for allocation into the core. Ready Queues equal to the number of

big cores have been incorporated to store all the instance of a particular big complex task to a

particular Ready Queue as we consider the partition schema where all the instances of a task are

executed on the same core. The instances of the task are next forwarded from the Ready Queue to

local queue and subsequently into the big core corresponding to the Ready Queue using task

partitioning scheduling.

2.2 Task Model

In the earlier study the task model is considered as,

𝑢𝑖𝑗 = 𝑥𝑖𝑗/P (2)

Where, 𝑋𝑖𝑗𝐵<=𝑋𝑖𝑗𝑆 for all Ti and the utilization of the big cores satisfies 0 <=𝑋𝑖𝑗𝐵/P <= 1

when 𝑋𝑖𝑗𝐵<P. If 𝑋𝑖𝑗𝐵> P, then we set 𝑈𝑖𝑗 to ∞ to indicate that task Ti cannot be mapped into the

core 𝐶𝑗.

This results a utilization matrix

U = [𝑈𝑖𝑗𝑛𝑥𝑚]

where n is the number of tasks and m is the number of cores.

(3)

2.4 System model for DAG task(parallel recurrent task)

Journal of Advanced Research in Technology and Management Sciences
Volume: 01 Issue: 03 ISSN: 2582-3078 November 2019

Available online at: http://www.jartms.org

DST Sponsored Three Day National Conference on

"Sensor Networks, Internet of Things and Internet of Everything", 17 October 2019 to 19 October 2019
Organized by Department of EEE, Chadalawada Ramanamma Engineering College (Autonomous), A.P.

88

We consider the preemptive GFP scheduling of n recurrent DAG tasks in set

Γ= {𝐺1, ...𝐺𝑛} (4)

A multicore processor having m cores. The (normalized) speed of each core is 1. Each DAG

task 𝐺𝑘∈Γ generates potentially infinite number of DAG instances, called the jobs of the task, such

that the release of two consecutive jobs of 𝐺𝑘 is separated by a minimum distance. Each DAG task 𝐺𝑘

is characterized using four parameters

𝐺𝑘 = (𝑇𝑘,𝐷𝑘,𝑉𝑘,𝐸𝑘) (5)

Where

 • 𝑇𝑘 is the minimum inter-arrival time of consecutive jobs (also, called the period) of task 𝐺𝑘;

• 𝐷𝑘 is the relative deadline such that 𝐷𝑘≤ 𝑇𝑘;

• 𝑉𝑘 = {𝑣𝑘, 1,...𝑣𝑘,𝑛𝑘} is a set of 𝑛𝑘 subtasks2; and

• 𝐸𝑘⊆(𝑉𝑘 ×𝑉𝑘) is a set of directed arcs (or edges).

The parameter 𝐷𝑘 specifies the real-time constraint. If the source (i.e., the first) subtask of

some job of task 𝐺𝑘becomes ready for execution at time t. The execution of all the subtasks of that job

must complete by time (t +𝐷𝑘).

3. SCHEDULERS IN MULTICORE ARCHITECTURE

In real time systems, process scheduling refers to the order of execution of real time tasks so that

they do not miss their deadlines. During the early 1970’s, several real time scheduling algorithms

were extensively studied. This paper analyses a few widely used existing real time scheduling

algorithms. A few important terms related to real time scheduling are:

• Utilization (Processor utilization) - It refers to the fraction of time spent by the CPU

in executing a set of tasks.

• Schedulability Test - It is a test to determine whether the tasks can meet their

deadlines.

• Optimal Scheduler - If a set of tasks cannot be scheduled by an optimal scheduler,

then it cannot be feasibly scheduled by any other scheduler. Tasks are said to be

feasibly scheduled if all of them meet their deadlines.

4. SCHEDULING ALGORITHM

Scheduling is the method by which work is assigned to resources that complete the work. The

work may be virtual computation elements such as threads, processes or data flows, which in turn

scheduled onto hardware resources such as processors, network links or expansion cards. Schedulers

are often implemented so they keep all computer resources busy. The scheduling algorithms are

priority scheduling, shortest job first, round robin scheduling, earliest deadline first. Some of them are

explained below.

4.1 The LTF scheduling algorithm

To schedule a list L = (𝑇1,𝑇2,...,𝑇𝑛) of parallel tasks on a single multicore processor with M

cores, algorithm LTF first sorts the n tasks in a non increasing order of task sizes. Without loss of

generality, let us assume that ,

𝑆1 ≥ 𝑆2≥ ··· ≥ 𝑆𝑛.

Algorithm LTF then schedules the n tasks in the order of 𝑇1,𝑇2,..., 𝑇𝑛.

Initially, tasks in the beginning of L, say𝑇1,𝑇2,...,𝑇𝑖 are scheduled for execution,

where i is as large as possible, i.e., the total size of 𝑇1,𝑇2,...,𝑇𝑖 does not exceed M, 𝑆1+𝑆2 +···+𝑆𝑖 ≤M,

but the total size of 𝑇1,𝑇2,...,𝑇𝑖,𝑇𝑖+1 exceeds M, 𝑆1+𝑆2 +···+𝑆𝑖+𝑆𝑖+1> M.

Journal of Advanced Research in Technology and Management Sciences
Volume: 01 Issue: 03 ISSN: 2582-3078 November 2019

Available online at: http://www.jartms.org

DST Sponsored Three Day National Conference on

"Sensor Networks, Internet of Things and Internet of Everything", 17 October 2019 to 19 October 2019
Organized by Department of EEE, Chadalawada Ramanamma Engineering College (Autonomous), A.P.

89

Whenever a task is completed, algorithm LTF checks whether there are enough available

cores for task𝑇𝑖+1. If so, task Ti is scheduled for execution; otherwise, algorithm LTF waits for the

next completion of a task. The above procedure is repeated until all tasks are scheduled.

4.2 Task-level Priority Assignment

The fixed priorities of the n tasks {𝐺1,𝐺2, …𝐺𝑛} are assigned based on Deadline Monotonic

(DM) priority ordering

4.2.1 Subtask-level Priority

During the subtask-level priority assignment, a subtask at a lower level of the DAG is given

higher priority in comparison to the one at a higher level. If two subtasks have the same level, then the

subtask having relatively higher (subtask) index is given higher priority. Given a subtask 𝑉𝑘, j ∈𝑉𝑘 of

particular task Gk, the set of subtasks in 𝑉𝑘 having higher fixed priorities than that of𝑉𝑘, j.

4.2.2 The two-level GFP Scheduler

The subtasks of the DAGs are executed based on a two-level scheduler. The task-level

scheduler determines the highest-priority ready task and the subtask level scheduler selects the

highest-priority subtask of for execution. A newly released relatively higher-priority subtask is

allowed to preempt the execution of a lower-priority subtask when all the cores are busy. Under the

subtask-level fixed-priority assignment policy, subtask j has lower fixed priority than all the subtasks

in set.

4.3 EDF scheduling

Earliest-deadline first (EDF) and least-laxity first (LLF) are optimal dynamic priority

algorithms for uni-processor systems. Dynamic priority algorithms provide better system

schedulability but suffer from high run-time costs.

The multicore real-time scheduling techniques are generally divided into three categories: partitioned,

global and semi-partitioned.

4.3.1 Partitioned technique

partition the given task set on the basis of some bin-packing heuristics such as First-Fit (FF),

Next-Fit (NF), Best-Fit (BF), Worst-Fit (WF) etc., and assign each partition to a separate processing

core. Each processing core executes its assigned portion of tasks using some uni-processor scheduling

approach. During execution; task migrations are not allowed.

4.4 Global scheduling

In this technique, all of the tasks are placed in a single prioritized queue and the scheduler

assigns them to cores according to their priority. Therefore, during execution tasks can migrate from

one core to another. Generally, global techniques perform better than partitioned approached but they

incur more run-time overheads. Semi-partitioned scheduling is presented as a compromise between

pure partitioned and global scheduling in order to reduce the runtime overheads associated with the

global scheduling and to improve the performance of partitioned scheduling.

4.5 Semi-partitioned Technique

In this technique extend the partitioned scheduling by allowing a small number of tasks to

migrate which results in improved performance.

5. TAXONOMY OF MULTICORE PROCESSORS

The problem in Dynamic Scheduling of Real-Time Tasks in Heterogeneous Multicore Systems is

Our objective is to introduce a real-time scheduling algorithm in heterogeneous multicore system

where tasks are allocated to cores based on the type of tasks as well as cores. There are two types of

tasks and cores in terms of power namely low power task and high power task.

5.1 General Task Problems

 In general, a task is called low or high power task if it has the following properties:

Journal of Advanced Research in Technology and Management Sciences
Volume: 01 Issue: 03 ISSN: 2582-3078 November 2019

Available online at: http://www.jartms.org

DST Sponsored Three Day National Conference on

"Sensor Networks, Internet of Things and Internet of Everything", 17 October 2019 to 19 October 2019
Organized by Department of EEE, Chadalawada Ramanamma Engineering College (Autonomous), A.P.

90

• Lower or higher data rate, hence lower or higher energy spent per unit of time to process the

data.

• Less or more complex in nature, so numbers of computation steps are less or more which

• Consumes low or high energy.

• Circuit complexity is less or high or operates at lower or higher clock frequency.

Multiprocessor scheduling can be viewed as attempting to solve two problems.

• The allocation problem and priority problem

• Scheduling algorithms for multiprocessor systems can be classified according to when

changes to priority and allocation.

5.1 According to Allocation Problems

• No migration - Each task is allocated to a processor and no migration is permitted.

• Task-level migration - The jobs of a task may execute on different processors; however, each

job can only execute on a single processor.

• Job-level migration.

5.2 According to Priority

• Fixed task priority- Each task having a single fixed priority applied to all of its jobs.

• Fixed job priority –The job may have different priorities, but each job has a single static

priority. An example of this is earliest deadline first t (EDF) scheduling.

• Dynamic priority- A single job may have different priorities at different times, for example

least laxity first (LLF) scheduling.

5.3 Schedulability, Feasibility, and Optimality

If a task is said to be feasible in a given system and there exists some scheduling algorithm that can

schedule all the tasks and execute without missing any deadlines.

If a scheduling algorithm is said to be optimal with respect to a system and a task model if it can

schedule all of the tasks that comply with the task model and are feasible on the system.

If a task is referred to as schedulable according to a given scheduling algorithm if its worst-case

response time under that scheduling algorithm is less than or equal to its deadline. Similarly, a tasks is

referred to as schedulable according to a given scheduling algorithm if all of its tasks are schedulable.

The following table.1 summaries the earlier work and the various simulators used for evaluation.

Table 1. Summary of recent multicore processor scheduling techniques
Refere

nces

Domain&

Simulator

Algorithm &

Implementation

Inference

1 Multicore

Processor& cycle-

accurate simulator

Optimization Proposed a four-step methodology for efficient design

space exploration and tunable parameters optimization for

multicore/manycore architectures.

2 Multicore

Processor

Prediction Some of the most popular prediction and classification for

prediction techniques employed across multiple levels of

the computing stack.

3 Multicore

Processor& state-

of-the-art and

sniper simulator

Instruction Level

Parallelism &

Single

Instruction

Multiple Data

We present a new analytic model for predicting application

performance on modern multi-core processors with vector

extensions.

It captures contention on shared caches and memory

bandwidth, and differentiates ILP per instruction type for

increased accuracy.

4 Multicore

Processor

Configuration Application specific soft processor descriptions in Verilog

HDL are generated automatically using the configurator

which analyses the application program and extracts the

only components/paths necessary for the application to be

executed as well as provides options in terms of the number

of processor cores and the structure of cache memory.

5 Multicore

Processor

Scheduling CAMPS accurately tracks the progress that the various

threads in the workload make when running on the different

core types throughout the execution, and enforces fairness

by evening out the progress across threads.

6 Multicore Multithreaded Custard: ASIC Workload-Aware Reliable Design for

Journal of Advanced Research in Technology and Management Sciences
Volume: 01 Issue: 03 ISSN: 2582-3078 November 2019

Available online at: http://www.jartms.org

DST Sponsored Three Day National Conference on

"Sensor Networks, Internet of Things and Internet of Everything", 17 October 2019 to 19 October 2019
Organized by Department of EEE, Chadalawada Ramanamma Engineering College (Autonomous), A.P.

91

Processor& logic

simulator

Switching

activity

Multicore IOT Processors.

7 Multicore

Processor& c

programming

environment

simulation

Dynamic

Scheduling

 It incorporates heterogeneity in dynamic scheduling of

tasks for multi-core real-time systems

8 Multicore

Processor& cycle-

accurate

instruction set

simulator

Implantation-

CMOS

technology

Compared with other embedded processors, HAVA

improves the performance of low-bit-rate vocoders by over

40% with nearly no efficiency loss for multichannel

processing

9 Multicore

Processor

Allocation

we have addressed the problem as multivariable

optimization problems and solved them algorithmically and

numerically. Our approach is based on a queueing model of

a virtual machine

10 Multicore

Processor& 8086

simulator

Scheduling We propose a reliability-aware scheduler that samples the

reliability characteristics of running applications on either

core type, and dynamically schedules applications on big

versus small cores to improve overall system reliability.

11 Multicore

Processor

Scheduling A simple method to assign fixed priorities to the subtasks of

a DAG task is proposed based on the structure (i.e.,

topology) of each DAG task.

12 Multicore

Processor&grid-

type thermal

simulation

Scheduling This work breaks away from the common assumption of

initially static operation modes in 3D-MCP systems and to

develop dynamic operation-mode prediction with machine

learning models to reduce hotspots and optimize system

performance.

13 Multicore

Processor&

electromagnetic

simulation

Sequential This paper shows that sliding window Gauss–Seidel

exhibits scalable behaviour on CMP, particularly when the

problem size is larger than the available cache.

14 Multicore

Processor

Advanced

Encryption

Standard based

on Counter with

Chaining Mode

We have proposed an Authentication based Matrix

transformation cum Parallel-encryption implemented on

Multicore Processor to achieve a comprehensive

performance, high throughput and secure AES-CCM, yet

low overheads of the power dissipation and the latency.

15 Multicore

Processor

Accelerating

Wait-Free

These two techniques can help a wait-free algorithm

leverage a multicore processor’s caches and write buffers

better. Besides, they can be applied to a wait-free algorithm

while maintaining the control flow of the original algorithm

without dramatic changes.

16 Multicore

Processor

Joint DVFS-

QoS-aware Task

mapping

To optimally solve the MILP problem, we propose a JDQT

algorithm. It reduces the computational complexity by

iterating two smaller, but highly correlated, sub problems:

an MP problem for task-to-processor allocation and

frequency-to task assignment, and a SP problem for task

scheduling and task adjustment.

17 Multicore

Processor

Low Density

Parity Check

decoding

We have presented an efficient LDPC software decoder in

terms of throughput for multi-core device. This LDPC

decoder was implemented on an x86 processor.

18 Multicore

Processor

Optimization We propose PH-Sifter, a fast operating point sifting

technique that starts at the lowest operating point, filters all

the points until the next operating point that achieves the

highest Delta Performance / Delta Power value, and

continues until all the points are considered.

19 Multicore

Processor&

SPICE simulation

novel

decomposition

,Optimal Joint

We formulated the problem of task mapping on DVFS-

enabled homogeneous multicore as an MILP, with the goal

of maximizing QOS without violating the real-time and the

Journal of Advanced Research in Technology and Management Sciences
Volume: 01 Issue: 03 ISSN: 2582-3078 November 2019

Available online at: http://www.jartms.org

DST Sponsored Three Day National Conference on

"Sensor Networks, Internet of Things and Internet of Everything", 17 October 2019 to 19 October 2019
Organized by Department of EEE, Chadalawada Ramanamma Engineering College (Autonomous), A.P.

92

Task Mapping energy supply constraints. This problem is optimally solved

by the OJTM algorithm. A novel algorithm, HJTM, is

proposed to further reduce the computational complexity.

20 Interconnection &

event-driven

simulator

routing We designed a new type of wide-sense non-blocking

interconnection network for multicast connections, the

MCL. Our motivation is to deal with the conflict between

the performance and the cost. We managed to reduce the

cost of the interconnection networks without harming their

non-blocking multicast capability.

21 Interconnection Implementation

on silicon chip

Proposed a Capacitive-Coupling based RF interconnection

for the heterogeneous integration of silicon-chip and printed

paper electronics. Inkjet printing technology is utilized as a

cost-effective manufacture approach to fabricate the

interconnections on paper substrate.

22 Multicore

Processor

Adaptive

Deblocking

Filter Order

This paper proposes an architecture of ILF to effectively

provide parallelism among multiple decoding cores for high

performance applications. The important feature of the

architecture is enabling multicore decoding using novel

memory organization and efficient neighbouring data

control for tile or WPP without additional ILF for partition

boundaries

23 Multicore

Processor&

Monte Carlo

simulation

co-schedulers In this paper, a graph is constructed for the co-scheduling

problem. Then finding the optimal co-scheduling solution is

modelled as finding the shortest valid path in the graph.

24 Multicore

Processor& all

type of

simulations

framework This paper introduces a novel multicore framework that

leverages

isolationatthegranularityofclustersofcorestoprovidedetermin

istic execution of multiple concurrent applications, along

with efficient resiliency and security guarantees.

25 Multicore

Processor&

DineroIV trace-

driven simulator

Prediction A new cache replacement policy “PVISAM” is presented in

this article to allow unified, shared cache miss upper bound

prediction by using the existing private cache prediction

techniques. Additionally, the policy makes efficient

utilization of cache space.

26 Multicore

Processor&

architecture

simulators

Parallel Our solution combines a high-performance core suitable for

sequential execution, and several lightweight low power

cores devoted to parallel execution.

6. CONCLUSION

The survey among the real time scheduling multicore processors are performed in this article. By

using the multicore processors we can execute multiple tasks and we can save the time also. They

have used the dynamic scheduling algorithms to give priority for their tasks to execute. According to

the workload the cores are splitted into small and big cores. Because of splitting the tasks can

efficiently usage of the cores and moreover the result will be accurate and efficient.

References

[1] F. Oboril and M. B. Tahoori, “ExtraTime: Modeling and analysis of wear out due to

transistor aging at microarchitecture-level,” in Proc. 42nd Annu. IEEE/IFIP Int. Conf.

Dependable Sys.

[2] D. Koufaty, D. Reddy, and S. Hahn “Bias Scheduling in Heterogeneous Multi-core

Architectures” in Proc.

Journal of Advanced Research in Technology and Management Sciences
Volume: 01 Issue: 03 ISSN: 2582-3078 November 2019

Available online at: http://www.jartms.org

DST Sponsored Three Day National Conference on

"Sensor Networks, Internet of Things and Internet of Everything", 17 October 2019 to 19 October 2019
Organized by Department of EEE, Chadalawada Ramanamma Engineering College (Autonomous), A.P.

93

[3] N. Chitlur, G. Srinivasa, S. Hahn, P. K. Gupta, D. Reddy, D. Koufaty, P. Brett, A.

Prabhakaran, L. Zhao, N. Ijih, S. Subhaschandra, S. Grover, X. Jiang, and R. Iyer

“QuickIA: Exploring Heterogeneous Architectures on Real Prototypes”, in Proc.

HPCA/IEEE, Washington, DC, USA, 2012, pp. 1-8.

[4] G. Tong and C. Liu “Supporting Soft Real-Time Sporadic Task Systems on Uniform

Heterogeneous Multiprocessors with No Utilization Loss”, IEEE Transactions on Parallel

and Distributed Systems, vol. 27, no.9, pp. 2740-2752, Sep, 2016.

[5] K. Baital and A. Chakrabarti, "An Efficient Dynamic Scheduling of Tasks for Multi-core

Real Time Systems", in Advances in Computing Applications, Chakrabarti A., Sharma

N., Balas V. (eds), Singapore: Springer, 2016, pp. 31-47.

[6] W. Munawar, H. Khdr, S. Pagani, M. Shafique, J. Chen, and J. Henkel “Peak Power

Management for Scheduling Real-time Tasks on Heterogeneous Many-Core Systems”, in

Proc. ICPADS/IEEE, Hsinchu, Taiwan, 2014, pp.200-209.

[7] S. Baruah, “Task partitioning upon heterogeneous multiprocessor platforms”, in Proc.

RTAS/IEEE, Toronto, Canada, 2004, pp. 536543.

[8] M. A. Kinsy and S. Devadas "Algorithms for Scheduling Taskbased Applications onto

Heterogeneous Many-core Architectures", in Proc. HPEC/IEEE, MA, USA, 2014, pp. 1-

6.

[9] C. Tan, T. S Muthukaruppan, T. Mitra, and L. Ju " Approximation-Aware Scheduling on

Heterogeneous Multi-core Architectures", in Proc. ASP-DAC/IEEE, Chiba, Japan, 2015,

pp.618-623.

[10] F. Yan, L. Cherkasova, Z. Zhang, and E. Smirni "DyScale: a MapReduce Job Scheduler

for Heterogeneous Multicore Processors", IEEE Transactions on Cloud Computing, vol.

5, no. , pp. 317-330, 2017.

[11] Y. Li, J. Niu, and M. Qiu “Energy Efficient Scheduling with Probability and Task

Migration Considerations for Soft Real-time Systems”, in Proc. ComComAp/IEEE,

Beijing, China, 2014, pp. 287-293.

[12] D. Liu, J. Spasic, P. Wang, and T. Stefanov “Energy-Efficient Scheduling of Real-Time

Tasks on Heterogeneous Multicores Using Task Splitting”, in Proc. Int. Conf.

RTCSA/IEEE, Daegu, South Korea, 2016, pp. 149-158.

[13] S. Saha, Y. Lu, and J. S. Deogun “Thermal-Constrained EnergyAware Partitioning for

Heterogeneous Multi-Core Multiprocessor Real-Time Systems”, Int. Conf.

RTCSA/IEEE, Seoul, South Korea, 2012, pp.41-50.

[14] F. A. Bower, D. J. Sorin, and L. P. Cox “The Impact of Dynamically Heterogeneous

Multicore Processors on Thread Scheduling”, IEEE Micro, vol. 28, no. 3, pp. 17-25, Jun,

2008.

[15] Y. Chen, H. C. Liao, T. Tsai “Online Real-Time Task Scheduling in Heterogeneous

Multicore System-on-a-Chip”, IEEE Transactions on Parallel and Distributed Systems,

vol. 24, no. 1, pp. 118-130, Jan, 2013.

[16] S. Xu, I. Koren and C. M. Krishna “Thermal-Aware Task Allocation and Scheduling for

Heterogeneous Multi-core CyberPhysical Systems", Int'l Conf. Embedded Systems,

Cyber-physical Systems & Applications ESCS, Las Vegas, USA, 2016.

[17] D. Chen, A. Mok, and S. Baruah "On Modeling Real-Time Task Systems”, in Lectures on

Embedded Systems. EEF School 1996. Lecture Notes in Computer Science, Rozenberg

G., Vaandrager F.W, Berlin, Heidelberg, Springer 1998.

[18] A. S. Radhamani and E. Baburaj, “Performance Efficient Heterogeneous Multicore

Scheduling Strategy based on Genetic Algorithm”, ARPN Journal of Engineering and

Applied Sciences.

[19] A.Naithani, S.Eyerman, and L.Eeckhout, “Reliability-aware scheduling

onheterogeneousmulticoreprocessors,”inProceedingsofthe23rdIEEE Symposium on High

[20] Performance Computer Architecture (HPCA).

[21] G.Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications. Third Edition, Springer.

Journal of Advanced Research in Technology and Management Sciences
Volume: 01 Issue: 03 ISSN: 2582-3078 November 2019

Available online at: http://www.jartms.org

DST Sponsored Three Day National Conference on

"Sensor Networks, Internet of Things and Internet of Everything", 17 October 2019 to 19 October 2019
Organized by Department of EEE, Chadalawada Ramanamma Engineering College (Autonomous), A.P.

94

[22] G. M. Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” in Proc. of AFIPS, 1967.

[23] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations by work

stealing,” Journal of the ACM, vol. 46, no. 5, pp. 720–748, 1999.

[24] K. Lakshmanan, S. Kato, and R. Raj Kumar, “Scheduling parallel realtime tasks on multi-

core processors,” in Proc. of RTSS, 2010.

[25] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic, “Techniques optimizing the

number of processors to schedule multi-threaded tasks,” in Proc. of ECRTS. H. S. Chwa,

J. Lee, K.-M. Phan, A. Easwaran, and I. Shin, “Global edf schedulability analysis for

synchronous parallel tasks on multicore platforms,” in Proc. of ECRTS.

[26] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-time analysis of

synchronous parallel tasks in multiprocessor systems”.

